
Java Fundamentals
The Parts of a Java program

Table of contents

Table of contents for this presentation
1 Parts of a Java program

2 The print and println methods

3 Variables and Literals

4 Displaying Multiple Items with the + Operator

5 Identifiers

6 Variable and class names

7 Primitive Data Types

8 Arithmetic Operators

9 The Math Class

10 Combined Assignment Operators

11 Conversion between Primitive Data Types

12 Mixed Integer Operations

13 Creating Named Constants with final

14 The String Class

15 The Scope of a variable

16 Comments

17 The Scanner class

18 The JOptionPane Class

19 Converting String Input to Numbers

Parts of a Java program

1 // A simple Java program

2

3 public class Parts

4 {

5 public static void main(String[] args)

6 {

7 System.out.println(“I love programming!”);

8 }

9 }

Program output

I love programming!

Table of contents

Parts of a Java program

1 // A simple Java program

2

3 public class Parts

4 {

5 public static void main(String[] args)

6 {

7 System.out.println(“I love programming!”);

8 }

9 }

Program output

I love programming!

“//” marks the beginning of a comment

Table of contents

Parts of a Java program

1 // A simple Java program

2

3 public class Parts

4 {

5 public static void main(String[] args)

6 {

7 System.out.println(“I love programming!”);

8 }

9 }

Program output

I love programming!

Insert blank lines in programs to make them easier to read

Table of contents

Parts of a Java program

1 // A simple Java program

2

3 public class Parts

4 {

5 public static void main(String[] args)

6 {

7 System.out.println(“I love programming!”);

8 }

9 }

Program output

I love programming!

Class header marks the beginning of a class definition.

A class serves as a container for an application.

Table of contents

Parts of a Java program

1 // A simple Java program

2

3 public class Parts

4 {

5 public static void main(String[] args)

6 {

7 System.out.println(“I love programming!”);

8 }

9 }

Program output

I love programming!

Is a java key word. It must be

written in lowercase letters.

Known as an access specifier. The

public specifier means access to the

class is unrestricted (“Open to the

public”).

Table of contents

Parts of a Java program

1 // A simple Java program

2

3 public class Parts

4 {

5 public static void main(String[] args)

6 {

7 System.out.println(“I love programming!”);

8 }

9 }

Program output

I love programming!

Is a java key word. It must be

written in lowercase letters.

Indicates the beginning of a class

definition

Table of contents

Parts of a Java program

1 // A simple Java program

2

3 public class Parts

4 {

5 public static void main(String[] args)

6 {

7 System.out.println(“I love programming!”);

8 }

9 }

Program output

I love programming!

The name of the class made up

by the programmer.

Table of contents

Parts of a Java program

1 // A simple Java program

2

3 public class Parts

4 {

5 public static void main(String[] args)

6 {

7 System.out.println(“I love programming!”);

8 }

9 }

Program output

I love programming!

In short: This line tells the compiler that a publicly

accessible class named “Parts” is being defined.

Table of contents

Parts of a Java program

1 // A simple Java program

2

3 public class Parts

4 {

5 public static void main(String[] args)

6 {

7 System.out.println(“I love programming!”);

8 }

9 }

Left brace or opening brace associated with the

beginning of the class definition.

Right brace or closing brace. Everything between the

two braces is the body of the class named Parts.
Table of contents

Parts of a Java program

1 // A simple Java program

2

3 public class Parts

4 {

5 public static void main(String[] args)

6 {

7 System.out.println(“I love programming!”);

8 }

9 }

The method header marks the beginning of a method.

The name of this method is “main”. The rest of the

words are required for the method to be properly

defined.

Every Java application must have a method named

“main”. This is the starting point of an application.
Table of contents

Parts of a Java program

1 // A simple Java program

2

3 public class Parts

4 {

5 public static void main(String[] args)

6 {

7 System.out.println(“I love programming!”);

8 }

9 }

Left brace or opening brace associated with the

beginning of the main method.

Right brace or closing brace. Everything between the

two braces is the body of the method main.
Table of contents

Parts of a Java program

1 // A simple Java program

2

3 public class Parts

4 {

5 public static void main(String[] args)

6 {

7 System.out.println(“I love programming!”);

8 }

9 }

In short: this line displays a message on the screen.

The message “I love programming!” is printed on the

screen without any quotation marks.

Table of contents

Parts of a Java program

1 // A simple Java program

2

3 public class Parts

4 {

5 public static void main(String[] args)

6 {

7 System.out.println(“I love programming!”);

8 }

9 }

At the end of the line is a semicolon. A semicolon

marks the end of a statement in Java. Not every line

of code ends with a semicolon.

Table of contents

Java Fundamentals
The print and println methods

These methods are used to display text output. They

are part of the Java Application Programmer Interface

(API), which is a collection of prewritten classes and

methods for performing specific operations in Java and

are available to all Java programs.

Table of contents

The print and println methods

1 // A simple Java program

2

3 public class Parts

4 {

5 public static void main(String[] args)

6 {

7 System.out.println(“I love programming!”);

8 }

9 }

5 public static void main(String[] args)

6 {

7 System.out.println(“I love programming!”);

8 }

Table of contents

The print and println methods

1 // A simple Java program

2

3 public class Parts

4 {

5 public static void main(String[] args)

6 {

7 System.out.println(“I love programming!”);

8 }

9 }

5 public static void main(String[] args)

6 {

7 System.out.println(“I love programming!”);

8 }

Table of contents

The print and println methods

5 public static void main(String[] args)

6 {

7 System.out.println(“I love programming!”);

8 }

System is a class that is part of the Java API. This class

contains methods and objects. One of the objects in

the System class is named out.

Table of contents

The print and println methods

5 public static void main(String[] args)

6 {

7 System.out.println(“I love programming!”);

8 }

System is a class that is part of the Java API. This class

contains methods and objects. One of the objects in

the System class is named out.

The out object also has methods which include print

and println.

Table of contents

The print and println methods

System class

Object out

Methods

print println

System

out

println(“ “);

. .

Table of contents

The print method
5 public static void main(String[] args)

6 {

7 System.out.print(“I love programming!”);

8 }

An important thing to know about the print method

is that it does not advance the cursor to the

beginning of the next line after displaying the

message:

Printed on the computer screen when application runs:

I love programming!

Table of contents

The print method
5 public static void main(String[] args)

6 {

7 System.out.print(“I love programming!”);

8 }

An important thing to know about the print method

is that it does not advance the cursor to the

beginning of the next line after displaying the

message:

Printed on the computer screen when application runs:

I love programming!|

Table of contents

The println method
5 public static void main(String[] args)

6 {

7 System.out.println(“I love programming!”);

8 }

An important thing to know about the println method

is that it advances the cursor to the beginning of the

next line after displaying the message:

Printed on the computer screen when application runs:

I love programming!

Table of contents

The println method
5 public static void main(String[] args)

6 {

7 System.out.println(“I love programming!”);

8 }

I love programming!
|

An important thing to know about the println method

is that it advances the cursor to the beginning of the

next line after displaying the message:

Printed on the computer screen when application runs:

Table of contents

public static void main(String[] args)

{

System.out.print(“I love the following:”);

System.out.print(“Sweets”);

System.out.print(“Chips”);

System.out.print(“Coffee”);

}

I love the following:SweetsChipsCoffee

Printed on the computer screen when application runs:

The print and println methods

Table of contents

public static void main(String[] args)

{

System.out.println(“I love the following:”);

System.out.println(“Sweets”);

System.out.println (“Chips”);

System.out.print(“Coffee”);

}

I love the following:

Sweets

Chips

Coffee

Printed on the computer screen when application runs:

The print and println methods

I love the following:SweetsChipsCoffee

Table of contents

public static void main(String[] args)

{

System.out.println(“I love the following:”);

System.out.println(“Sweets”);

System.out.println (“Chips”);

System.out.print(“Coffee”);

}

I love the following:

Sweets

Chips

Coffee

Printed on the computer screen when application runs:

The print and println methods

|
Table of contents

public static void main(String[] args)

{

System.out.print(“I love the following:\n”);

System.out.print(“Sweets\n”);

System.out.print (“Chips\n”);

System.out.print(“Coffee\n”);

}

I love the following:

Sweets

Chips

Coffee

Printed on the computer screen when application runs:

The escape sequence
The escape sequence starts with a backslash

character “\” followed by control characters (in this

case the letter “n”)

Table of contents

public static void main(String[] args)

{

System.out.print(“I love the following:\n”);

System.out.print(“Sweets\n”);

System.out.print (“Chips\n”);

System.out.print(“Coffee\n”);

}

I love the following:

Sweets

Chips

Coffee

Printed on the computer screen when application runs:

The escape sequence
The escape sequence starts with a backslash

character “\” followed by control characters (in this

case the letter “n”)

|
Table of contents

Java Fundamentals
Variables and Literals

A variable is a named storage location in the

computer’s memory. A literal is a value written into

the code of a program.

Table of contents

Variables and Literals
1 // A program that uses variables

2

3 public class Variables

4 {

5 public static void main(String[] args)

6 {

7 int value;

8

9 value = 10;

10 System.out.print(“The value is “);

11 System.out.println(value);

12

13 }

14 }

Printed on the computer screen when application runs:

The value is 10
Table of contents

Variables and Literals
1 // A program that uses variables

2

3 public class Variables

4 {

5 public static void main(String[] args)

6 {

7 int value;

8

9 value = 10;

10 System.out.print(“The value is “);

11 System.out.println(value);

12

13 }

14 }

Printed on the computer screen when application runs:

The value is 10

We call this line of code a variable declaration. A

variable must first be declared before it can be used.

A variable declaration tells the compiler the variable’s

name and type of data it will hold.

Table of contents

Variables and Literals
1 // A program that uses variables

2

3 public class Variables

4 {

5 public static void main(String[] args)

6 {

7 int value;

8

9 value = 10;

10 System.out.print(“The value is “);

11 System.out.println(value);

12

13 }

14 }

Printed on the computer screen when application runs:

The value is 10

The word int

stands for

integer which

is the data

type of the

declaration.

Table of contents

Variables and Literals
1 // A program that uses variables

2

3 public class Variables

4 {

5 public static void main(String[] args)

6 {

7 int value;

8

9 value = 10;

10 System.out.print(“The value is “);

11 System.out.println(value);

12

13 }

14 }

Printed on the computer screen when application runs:

The value is 10

The word

value is a

word the

programmer

chooses to

hold integer

numbers.

Table of contents

Variables and Literals
1 // A program that uses variables

2

3 public class Variables

4 {

5 public static void main(String[] args)

6 {

7 int value;

8

9 value = 10;

10 System.out.print(“The value is “);

11 System.out.println(value);

12

13 }

14 }

Printed on the computer screen when application runs:

The value is 10

This is called an assignment statement. The equal sign

is an operator that stores the value on its right (10)

into the variable on its left (value).

Table of contents

Variables and Literals
1 // A program that uses variables

2

3 public class Variables

4 {

5 public static void main(String[] args)

6 {

7 int value;

8

9 value = 10;

10 System.out.print(“The value is “);

11 System.out.println(value);

12

13 }

14 }

Printed on the computer screen when application runs:

The value is 10

The first line here sends the string literal “The value

is “ to the print method. The second line sends the

name of the value variable to the println method.

Table of contents

Variables and Literals
1 // A program that uses variables

2

3 public class Variables

4 {

5 public static void main(String[] args)

6 {

7 int value;

8

9 value = 10;

10 System.out.print(“The value is “);

11 System.out.println(value);

12

13 }

14 }

Printed on the computer screen when application runs:

The value is 10

When you send a variable to the print or prinln

methods, the value of that variable will be displayed.

Important: there are no quotation marks around the

variable value!

Table of contents

Displaying Multiple Items with the +

Operator
When the + operator is used with strings ,we call it a string

concatenation operator. To concatenate means to append.

The string concatenation operator appends one string to

another.

System.out.println(“Today is “ + “a good day!”);

Printed on the computer screen when application runs:

Today is a good day!

The + operator produces a string that is a combination of

the 2 strings both sides of the operator.

Table of contents

Displaying Multiple Items with the +

Operator
We can also use the + operator to concatenate the

contents of a variable to a string.

number = 857623;

System.out.println(“Today’s lotto number is: ” + number);

Printed on the computer screen when application runs:

Today’s lotto number is: 857623

The + operator is used to concatenate the contents of the

number variable with the string “Today’s lotto number is:

“. The + operator converts the number variable’s value

from an integer to a string and then appends the new

value.

Table of contents

Identifiers

Variable names and class names are examples of identifiers

(represents some element of a program)

You should always choose names for your variables that

give an indication of what they are used for:

int y;

This gives us no clue as to what the purpose of the variable is.

int numberOfCows;

numberOfCows gives anyone reading the program an idea of

what the variable is used for.

int numberofcows;

Table of contents

Identifiers

The following rules must be followed with all identifiers:

The first character must be one of the letters a-z,

A-Z, underscore ”_”, or the dollar sign “$”

After the first character, you may use the letters a-z,

A-Z, underscore ”_”, the dollar sign “$”, and the

digits 0-9

No spaces

Uppercase and lowercase characters are distinct.

This means that numberOfCows is not the same as

numberofcows.

Table of contents

Variable and Class names

Start variable

names with a

lowercase letter

Start class

names with an

uppercase letter

Each subsequent

word’s first

letter must be

capitalised

Each subsequent

word’s first

letter must be

capitalised

Example: Example:

numberOfCows FarmCows

Variable Class

Table of contents

Primitive Data Types

There are many different types of data. Variables are

classified according to their data type. The data type

determines the kind of data that may be stored in them.

The data type also determines the amount of memory

the variable uses, and the way the variable formats and

stores data.

Table of contents

Primitive Data Types

Data

Type

Size Range

byte 1 byte Integers (-128 to +127)

short 2 bytes Integers (-32,768 to +32,767)

int 4 bytes Integers (-2,147,483,648 to +2,147,483,647)

long 8 bytes Integers (-9,223,372,036,854,775,808 to

+9,223,372,036,854,775,807)

float 4 bytes Floating-point numbers (±3.4E-38 to ±3.4E38, 7 digits of

accuracy)

double 8 bytes Floating-point numbers (±1.7E-308 to ±1.7E308, 15 digits

of accuracy)

Table of contents

Primitive

Data Types ranking

double

float

long

int

short

byte

Highest rank

Lowest rank

Table of contents

The Integer Data Types

The integer data types include byte, short, int and long.

When you write an integer literal in your program code,

Java assumes it to be of the int type. You can force an

integer literal to be treated as a long by suffixing it with

the letter L. Example: 14L would be treated as a long.

long numberOfCows;

numberOfCows = 14;

Java will assume an int type

long numberOfCows;

numberOfCows = 14L;

Forced to be of type long

Table of contents

The Integer Data Types
1 public class IntegerVariables

2 {

3 public static void main(String[] args)

4 {

5 byte miles;

6 short minutes;

7 int temperatureLondon;

8 long days;

9

10 miles = 120;

11 minutes = 100;

12 temperatureLondon = -15;

13 days = 182500;

14

15 System.out.println(“We have made a journey of ” + miles +

16 “ miles in only ” + minutes + “ minutes.”);

17 System.out.println(“The temperature in London is “ +

18 temperatureLondon + “ degrees.”);

19 System.out.println(“There are “ + days + “ days in 500 years.”);

20 }

21 }

Table of contents

The Integer Data Types
1 public class IntegerVariables

2 {

3 public static void main(String[] args)

4 {

5 byte miles;

6 short minutes;

7 int temperatureLondon;

8 long days;

9

10 miles = 120;

11 minutes = 100;

12 temperatureLondon = -15;

13 days = 182500;

14

15 System.out.println(“We have made a journey of ” + miles +

16 “ miles in only ” + minutes + “ minutes.”);

17 System.out.println(“The temperature in London is “ +

18 temperatureLondon + “ degrees.”);

19 System.out.println(“There are “ + days + “ days in 500 years.”);

20 }

21 }

Variables declared as

a certain type

Values assigned to

variables

Table of contents

The Integer Data Types
1 public class IntegerVariables

2 {

3 public static void main(String[] args)

4 {

5 byte miles;

6 short minutes;

7 int temperatureLondon;

8 long days;

9

10 miles = 120;

11 minutes = 100;

12 temperatureLondon = -15;

13 days = 182500;

14

15 System.out.println(“We have made a journey of ” + miles +

16 “ miles in only ” + minutes + “ minutes.”);

17 System.out.println(“The temperature in London is “ +

18 temperatureLondon + “ degrees.”);

19 System.out.println(“There are “ + days + “ days in 500 years.”);

20 }

21 }

We have made a journey of 120 miles in only 100 minutes.

Printed on the computer screen when application runs:

String literal

Table of contents

The Integer Data Types
1 public class IntegerVariables

2 {

3 public static void main(String[] args)

4 {

5 byte miles;

6 short minutes;

7 int temperatureLondon;

8 long days;

9

10 miles = 120;

11 minutes = 100;

12 temperatureLondon = -15;

13 days = 182500;

14

15 System.out.println(“We have made a journey of ” + miles +

16 “ miles in only ” + minutes + “ minutes.”);

17 System.out.println(“The temperature in London is “ +

18 temperatureLondon + “ degrees.”);

19 System.out.println(“There are “ + days + “ days in 500 years.”);

20 }

21 }

We have made a journey of 120 miles in only 100 minutes.

Printed on the computer screen when application runs:

Concatenation (+) operator

Table of contents

The Integer Data Types
1 public class IntegerVariables

2 {

3 public static void main(String[] args)

4 {

5 byte miles;

6 short minutes;

7 int temperatureLondon;

8 long days;

9

10 miles = 120;

11 minutes = 100;

12 temperatureLondon = -15;

13 days = 182500;

14

15 System.out.println(“We have made a journey of ” + miles +

16 “ miles in only ” + minutes + “ minutes.”);

17 System.out.println(“The temperature in London is “ +

18 temperatureLondon + “ degrees.”);

19 System.out.println(“There are “ + days + “ days in 500 years.”);

20 }

21 }

We have made a journey of 120 miles in only 100 minutes.

Printed on the computer screen when application runs:

Value of

variable miles

Table of contents

The Integer Data Types
1 public class IntegerVariables

2 {

3 public static void main(String[] args)

4 {

5 byte miles;

6 short minutes;

7 int temperatureLondon;

8 long days;

9

10 miles = 120;

11 minutes = 100;

12 temperatureLondon = -15;

13 days = 182500;

14

15 System.out.println(“We have made a journey of ” + miles +

16 “ miles in only ” + minutes + “ minutes.”);

17 System.out.println(“The temperature in London is “ +

18 temperatureLondon + “ degrees.”);

19 System.out.println(“There are “ + days + “ days in 500 years.”);

20 }

21 }

We have made a journey of 120 miles in only 100 minutes.

Printed on the computer screen when application runs:

Concatenation (+) operator

Table of contents

The Integer Data Types
1 public class IntegerVariables

2 {

3 public static void main(String[] args)

4 {

5 byte miles;

6 short minutes;

7 int temperatureLondon;

8 long days;

9

10 miles = 120;

11 minutes = 100;

12 temperatureLondon = -15;

13 days = 182500;

14

15 System.out.println(“We have made a journey of ” + miles +

16 “ miles in only ” + minutes + “ minutes.”);

17 System.out.println(“The temperature in London is “ +

18 temperatureLondon + “ degrees.”);

19 System.out.println(“There are “ + days + “ days in 500 years.”);

20 }

21 }

We have made a journey of 120 miles in only 100 minutes.

Printed on the computer screen when application runs:

String literal

Table of contents

The Integer Data Types
1 public class IntegerVariables

2 {

3 public static void main(String[] args)

4 {

5 byte miles;

6 short minutes;

7 int temperatureLondon;

8 long days;

9

10 miles = 120;

11 minutes = 100;

12 temperatureLondon = -15;

13 days = 182500;

14

15 System.out.println(“We have made a journey of ” + miles +

16 “ miles in only ” + minutes + “ minutes.”);

17 System.out.println(“The temperature in London is “ +

18 temperatureLondon + “ degrees.”);

19 System.out.println(“There are “ + days + “ days in 500 years.”);

20 }

21 }

We have made a journey of 120 miles in only 100 minutes.

Printed on the computer screen when application runs:

Value of variable

minutes

Table of contents

The Integer Data Types
1 public class IntegerVariables

2 {

3 public static void main(String[] args)

4 {

5 byte miles;

6 short minutes;

7 int temperatureLondon;

8 long days;

9

10 miles = 120;

11 minutes = 100;

12 temperatureLondon = -15;

13 days = 182500;

14

15 System.out.println(“We have made a journey of ” + miles +

16 “ miles in only ” + minutes + “ minutes.”);

17 System.out.println(“The temperature in London is “ +

18 temperatureLondon + “ degrees.”);

19 System.out.println(“There are “ + days + “ days in 500 years.”);

20 }

21 }

We have made a journey of 120 miles in only 100 minutes.

Printed on the computer screen when application runs:

String literal

Table of contents

The Integer Data Types
1 public class IntegerVariables

2 {

3 public static void main(String[] args)

4 {

5 byte miles;

6 short minutes;

7 int temperatureLondon;

8 long days;

9

10 miles = 120;

11 minutes = 100;

12 temperatureLondon = -15;

13 days = 182500;

14

15 System.out.println(“We have made a journey of ” + miles +

16 “miles in only ” + minutes + “ minutes.”);

17 System.out.println(“The temperature in London is “ +

18 temperatureLondon + “ degrees.”);

19 System.out.println(“There are “ + days + “ days in 500 years.”);

20 }

21 }

We have made a journey of 120 miles in only 100 minutes.

The temperature in London is -15 degrees.

There are 182500 days in 500 years.

Printed on the computer screen when application runs:

Table of contents

The Floating-Point Data Types

The floating-point data types include float and double.

When you write a floating-point literal in your program

code, Java assumes it to be of the double data type. You

can force a floating-point literal to be treated as a float by

suffixing it with the letter F. Example: 14.0F would be

treated as a float.

float pay;

pay = 1800.99;

This statement will give an

error message (1800.99

seen as a double)

float pay;

pay = 1800.99F; Forced to be of type float

Table of contents

Scientific and E notation

Floating-point literals can be represented in scientific notation.

The number 3872.38 can be represented as 3.87238 x 10³

Java uses E notation to represent values in scientific notation:

In E notation, the number 3.87238 x 10³ would be 3.87238E3

Table of contents

The boolean Data Type

The boolean data type allows you to create variables that

may hold one of two possible values: true or false.

boolean variables are useful for evaluating conditions that

are either true or false.

Table of contents

The boolean Data Type
1 public class booleanData

2 {

3 public static void main(String[] args)

4 {

5 boolean value;

6

7 value = true;

8 System.out.println(value);

9 value = false;

10 System.out.println(value);

11 }

12 }

true

Printed on the computer screen when application runs:

false

Table of contents

The char Data Type

The char data type is used to store characters. This data

type can hold only one character at a time.

Character literals are enclosed in single quotation marks.

Table of contents

The char Data Type
1 public class Characters

2 {

3 public static void main(String[] args)

4 {

5 char letter;

6

7 letter = ‘A’;

8 System.out.println(letter);

9 letter = ‘B’;

10 System.out.println(letter);

11 }

12 }

A

Printed on the computer screen when application runs:

B

Table of contents

The char Data Type
Unicode

Characters are internally represented by numbers. Each

character is assigned a unique number.

Java uses Unicode, which is a set of numbers that are used

as codes for representing characters. Each Unicode

number requires two bytes of memory, so char variables

occupy two bytes.

Table of contents

The char Data Type
1 public class Characters

2 {

3 public static void main(String[] args)

4 {

5 char letter;

6

7 letter = 65;

8 System.out.println(letter);

9 letter = 66;

10 System.out.println(letter);

11 }

12 }

A

Printed on the computer screen when application runs:

B

Table of contents

Arithmetic Operators

Java offers a multitude of operators for manipulating data.

There are 3 types of operators: unary, binary, ternary.

(Please read page 79 for information on these 3 types)

Table of contents

Arithmetic Operators

Operator Meaning

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulus

Table of contents

Arithmetic Operators
Addition (+)

The addition operator returns the sum of its two operands.

answer = 5 + 4; // assigns 9 to variable answer

pay = salary + bonus; // assigns the value of salary + bonus to variable pay

number = number + 1; // assigns number + 1 to variable number

Table of contents

Arithmetic Operators
Subtraction (-)

The subtraction operator returns the value of its right

operand subtracted from its left operand.

answer = 5 - 4; // assigns 1 to variable answer

pay = salary - tax; // assigns the value of salary - tax to variable pay

number = number - 1; // assigns number - 1 to variable number

Table of contents

Arithmetic Operators
Multiplication (*)

The multiplication operator returns the product of its two

operands.

answer = 5 * 4; // assigns 20 to variable answer

pay = hours * rate // assigns the value of (hours * rate) to variable pay

students = students * 2; // assigns (students * 2) to variable students

Table of contents

Arithmetic Operators
Division (/)

The division operator returns the quotient of its left

operand divided by its right operand.

answer = 20 / 4; // assigns 5 to variable answer

average = marks / number; // assigns the value of (marks / number) to variable

//average

half = number / 2; // assigns (number / 2) to variable half

Table of contents

Arithmetic Operators
Modulus (%)

The modulus operator returns the remainder of a division

operation involving two integers.

leftOver = 22 / 4; // assigns 2 to variable leftOver

Table of contents

Arithmetic Operators
1 public class Salary

2 {

3 public static void main(String[] args)

4 {

5 double basicSalary, grossSalary;

6 double tax;

7 double pension;

8 double medical;

9

10 basicSalary = 19000.00;

11 tax = basicSalary * 0.35;

12 pension = 2399.50;

13 medical = pension / 2;

14 grossSalary = basicSalary – tax – pension – medical;

15

16 System.out.println(“My gross salary for this month is R“ +

17 grossSalary);

18 }

19 }

My gross salary for this month is R8750.75

Printed on the computer screen when application runs:

Table of contents

Integer division

double parts;

parts = 22 / 4; // will assign the value of 5.0

When both operands of a division statement are integers,

the statement will result in integer division. This means

that the result of the division will be an integer as well. If

there is a remainder, it will be discarded.

In order for a division operation to return a floating-point

value, one of the operands must be of a floating-point data

type.

double parts;

parts = 22.0 / 4; // will assign the value of 5.5

Table of contents

Operator Precedence

Please read page 81 and 82

Table of contents

Grouping with parentheses

Please read page 83 (top)

Table of contents

Calculating Percentages and

Discounts

Please read pages 83 to 85

5.0
100

50
%50

In Java we only use the 0.5 to

represent 50% in calculations.

Table of contents

The Math Class

The Java API provides a class named Math, which contains

numerous methods that are useful for performing complex

mathematical operations.

The methods pow, sqrt and constant PI are part of the

Math class.

Table of contents

The Math Class
The Math.pow Method

The Math.pow method raises a number to a power.

result = Math.pow(3.0, 2.0);

This method takes two double arguments. It raises

the first argument to the power of the second

argument, and returns the result as a double.

0.9

32

result

result

Table of contents

The Math Class
The Math.sqrt Method

The Math.sqrt method accepts a double value as its

argument and returns the square root of the value.

result = Math.sqrt(4.0);

0.2

4

result

result

Table of contents

The Math Class
The Math.PI predefined constant

The Math.PI constant is a constant assigned with a

value of 3.14159265358979323846, which is an

approximation of the mathematical value pi.

double area, radius;

radius = 5.5;

area = Math.PI * radius * radius;

03317777.95

5.55.5

area

area

Table of contents

Combined Assignment Operators

On the right of the assignment operator, 1 is added to

x. The result is then assigned to x, replacing the

previous value. Effectively, this statement adds 1 to x.

x = x +1; Faster way: x += 1;

On the right of the assignment operator, 1 is

subtracted from y. The result is then assigned to y,

replacing the previous value. Effectively, this

statement subtracts 1 from y.

y = y -1; Faster way: y -= 1;

Table of contents

Combined Assignment Operators

On the right of the assignment operator, 10 is

multiplied by z. The result is then assigned to z,

replacing the previous value. Effectively, this

statement multiplies z with 10.

z = z*10; Faster way: z *= 10;

On the right of the assignment operator, a is divided

by b. The result is then assigned to a, replacing the

previous value. Effectively, this statement divides a by

b.

a = a / b; Faster way: a /= b;

Table of contents

Combined Assignment Operators

On the right of the assignment operator, the

remainder of x divided by 4 is calculated. The result is

then assigned to x, replacing the previous value.

Effectively, this statement assigns the remainder of x/4

to x.

x = x % 4; Faster way: x %= 4;

Table of contents

Conversion between Primitive

Data Types

Before a value can be stored in a variable, the value’s

data type must be compatible with the variable’s

data type. Java performs some conversions between

data types automatically, but does not automatically

perform any conversion that can result in the loss of

data.

Table of contents

Conversion between Primitive

Data Types

int x;

double y = 2.8;

x = y;

This statement is attempting to store a double value (2.8) in

an int variable. This will give an error message. A double

can store fractional numbers and can hold values much

larger than an int can hold. If this were permitted, a loss of

data would be likely.

Table of contents

Conversion between Primitive

Data Types

int x;

short y = 2;

x = y;

This statement is attempting to store a short value (2) in an

int variable. This will work with no problems.

Table of contents

Conversion between Primitive

Data Types

double

float

long

int

short

byte

Primitive data type ranking

Highest rank

Lowest rank

Table of contents

Conversion between Primitive

Data Types

double

float

long

int

short

byte

In assignment statements

where values of lower-

ranked data types are

stored in variables of

higher-ranked data

types, Java automatically

converts the lower-ranked

value to the higher-ranked

type.

double x;

int y = 2;

x = y;

We call this a widening conversion
Table of contents

Conversion between Primitive

Data Types

double

float

long

int

short

byte

In assignment statements

where values of higher-

ranked data types are

stored in variables of

lower-ranked data types,

Java does not

automatically perform the

conversion because of

possible data loss.

int x;

double y = 2.0;

x = y;

We call this a narrowing conversion

Error!

Table of contents

Conversion between Primitive

Data Types

(Cast operators)

The cast operator lets you manually convert a value, even if

it means that a narrowing conversion will take place.

int x;

double y = 2.5;

x = y;

Error!

int x;

double y = 2.5;

x = (int) y;

Cast

operator
No problem!

Table of contents

Conversion between Primitive

Data Types

(Cast operators)

Java compiles the code with the cast operator with no

problems. In this case variable y has a value of 2.5 (floating-

point value) which must be converted to an integer.

int x;

double y = 2.5;

x = (int) y;

Cast

operator
No problem!

The value that is returned and stored in variable x would be

truncated, which means the fractional part of the number is

lost to accommodate the integer data type.

Thus: x = 2
The value of variable y is not

changed at all: y = 2.5
Table of contents

Mixed Integer Operations

One of the nuances of the Java language is the way it handles

arithmetic operations on int, byte and short.

When values of the byte or short data types are used in

arithmetic expressions, they are temporarily converted to

int values.

short x = 10, y = 20, z;

z = x + y;
Error!

How can we rectify this error?

Table of contents

Mixed Integer Operations

short x = 10, y = 20, z;

z = x + y;
Error!

The error results from the fact that z is a short. The

expression x + y results in an int value.

This can be corrected if z is declared as an int, or if a cast

operator is used.

short x = 10, y = 20;

int z;

z = x + y;
No problem!

short x = 10, y = 20, z;

z = (short) (x + y); No problem!
Table of contents

Other Mixed Mathematical

Expressions

Please read pages 91 and 92.

Table of contents

Creating Named Constants with

final

The final key word can be used in a variable declaration

to make the variable a named constant. Named

constants are initialized with a value, and that value

cannot change during the execution of the program.

amount = balance * 0.072;

The 1st problem that arises is that it is not clear to

anyone but the original programmer as to what the 0.072

is.

The 2nd problem occurs if this number is used in other

calculations throughout the program and must be

changed periodically.
Table of contents

Creating Named Constants with

final

We can change the code to use the final key word to

create a constant value.

amount = balance * 0.072;

final double INTEREST_RATE = 0.072;

amount = balance * INTEREST_RATE;

Old code

New code

Now anyone who reads the code will understand it.

When we want to change the interest rate, we change it

only once at the declaration.

Table of contents

The String Class

The String class allows you to create objects for holding

strings. It also has various methods that allow you to

work with strings.

A string is a sequence of characters. It can be used to

present any type of data that contains text. String literals

are enclosed in double quotation marks.

Java does not have a primitive data type for storing

strings in memory. The Java API provides a class for

handling strings. You use this class to create objects that

are capable of storing strings and performing operations

on them.

Table of contents

The String Class

Think of a class as a blueprint that objects may be

created from. So a class is not an object, but a

description of an object.

When the program is running, it can use the class to

create, in memory, as many objects as needed.

Earlier we introduced you to objects as software entities

that can contain attributes and methods. An object’s

attributes are data values that are stored in the object.

An object’s methods are procedures that perform

operations on the object’s attributes.

Table of contents

The String Class
Creating a String Object

Any time you write a string literal in your program, Java

will create a String object in memory to hold it. You can

create a String object in memory and store its address in

a String variable with a simple assignment statement:

String name = “Jet Li”;

This statement declares name as a String variable,

creates a String object with the value “Jet Li” stored in

it, and assigns the object’s memory address to the name

variable.

Table of contents

The String Class
Creating a String Object

String name = “Jet Li”;

This statement declares name as a String variable,

creates a String object with the value “Jet Li” stored in

it, and assigns the object’s memory address to the name

variable.

Table of contents

The String Class

1 public class StringExample

2 {

3 public static void main(String[] args)

4 {

5 String greeting = “Good morning “;

6 String name = “Jet Li!”;

7

8 System.out.println(greeting + name);

9 }

10 }

Good morning Jet Li!

Printed on the computer screen when application runs:

Table of contents

The String Class
String Methods

Because the String type is a class instead of a primitive

data type, it provides numerous methods for working

with strings.

Table of contents

The String Class
charAt() Method

This method returns the character at the specified

position.

char letter;

String name = “Arnold”;

letter = name.charAt(2);

0 1 2 3 4 5

A r n o l d

After this code executes, the variable letter will hold the

character ‘n’.

Table of contents

The String Class
length() Method

This method returns the number of characters in a

string.

int stringSize;

String name = “Arnold”;

stringSize = name.length();

0 1 2 3 4 5

A r n o l d

After this code executes, the variable stringSize will hold

the value 6.

Table of contents

The String Class
toLowerCase() Method

This method returns a new string that is the lowercase

equivalent of the string contained in the calling object.

String bigName = “ARNOLD”;

String littleName = bigName.toLowerCase();

After this code executes, the variable littleName will

hold the string “arnold”.

Table of contents

The String Class
toUpperCase() Method

This method returns a new string that is the uppercase

equivalent of the string contained in the calling object.

String littleName = “arnold”;

String bigName = littleName.toUpperCase();

After this code executes, the variable bigName will hold

the string “ARNOLD”.

Table of contents

The Scope of a variable

A variable’s scope is the part of the program that has

access to the variable. A variable is only visible to

statements inside the variable’s scope.

Variables that are declared inside a method (like the main

method) are called local variables.

A local variable’s scope begins at the variable’s

declaration and ends at the end of the method in

which the variable is declared.

A local variable cannot be accessed by code that is

outside the method, or inside the method but before

the variable’s declaration.

Table of contents

The Scope of a variable

1 public class VariableScope

2 {

3 public static void main(String[] args)

4 {

5 System.out.println(value);

6

7 double value = 5.7;

8 }

9 }

ERROR! This program attempts to send the contents of

variable value to println before the variable is declared.

Table of contents

The Scope of a variable

1 public class VariableScope

2 {

3 public static void main(String[] args)

4 {

5 double value = 5.7;

6

7 System.out.println(value);

8 }

9 }

No problem!

Table of contents

The Scope of a variable

Another rule you must remember about local variables is

that you cannot have two local variables with the same

name in the same scope.

Table of contents

The Scope of a variable
1 public class VariableScope

2 {

3 public static void main(String[] args)

4 {

5 int number = 5;

6 System.out.println(number);

7

8 int number = 7;

9 System.out.println(number);

10 }

11 }

ERROR! The variable number is declared twice within

one method.

Table of contents

The Scope of a variable
1 public class VariableScope

2 {

3 public static void main(String[] args)

4 {

5 int number = 5;

6 System.out.println(number);

7

8 number = 7;

9 System.out.println(number);

10 }

11 }

No problem!

Table of contents

Comments

Comments are notes of explanation that document

lines or sections of a program. Comments are part of

the program, but the compiler ignores them. They are

intended for people who may be reading the source

code.

Table of contents

Comments
Three ways to comment in Java

Single-Line comments (//)

Multi-line comments (/*….. */)

Documentation comments (/**….. */)

Table of contents

Comments
Single-Line comment

You simply place two forward slashes (//) where you

want the comment to begin. The compiler ignores

everything from that point to the end of the line.

1 // This is a single-line comment

2

3 public class …

4 {

5 ….

6 }

Table of contents

Comments
Multi-Line comment

Multi-Line comments start with a forward slash

followed by an asterisk (/*) and end with an asterisk

followed by a forward slash (*/). Everything between

these markers is ignored.

1 /*

2 This is a

3 Multi-Line comment

4 */

5 public class …

6 {

7 …

8 }

Table of contents

Comments
Documentation Comments

Documentation comments starts with /** and ends

with */. Normally you write a documentation

comment just before class and method headers,

giving a brief description of the class or method.

These comments can be read and processed by a

program named javadoc, which comes with the Sun

JDK. The purpose of the javadoc program is to read

Java source code files and generate attractively

formatted HTML files that document the source

code.

Please read pages 103, 104, 105

Table of contents

Comments
Documentation Comments

1 /**

2 This class creates a program that calculates

3 company payroll

4 */

5 public class Comment

6 {

7 /**

8 The main method is the program’s starting point

9 */

10 public static void main(String[] args)

11 {

12 …

13 }

14 }

Table of contents

Programming Style

Please read pages 106 and 107

Table of contents

Reading Keyboard Input
The Scanner class

Objects of the Scanner class can be used to

read input from the keyboard.

The Java API has an object System.in which

refers to the standard input device (normally

the keyboard). The System.in object reads

input only as byte values which isn’t very

useful. To work around this, we use the

System.in object in conjunction with an

object of the Scanner class.

The Scanner class is designed to read input

from a source (System.in) and provides

methods that you can use to retrieve the

input formatted as primitive values or

strings.
Table of contents

Reading Keyboard Input
The Scanner class

First, you create a Scanner object and

connect it to the System.in object:

Scanner keyboard = new Scanner(System.in);

Declares a variable named keyboard. The

data type of the variable is Scanner.

Because Scanner is a class, the keyboard

variable is a class type variable.

Remember that a class type variable holds the

memory address of an object. Therefore, the

keyboard variable will be used to hold the

address of a Scanner object

Table of contents

Reading Keyboard Input
The Scanner class

First, you create a Scanner object and

connect it to the System.in object:

Scanner keyboard = new Scanner(System.in);

The assignment operator will assign

something to the keyboard variable

Table of contents

Reading Keyboard Input
The Scanner class

First, you create a Scanner object and

connect it to the System.in object:

Scanner keyboard = new Scanner(System.in);

new is a Java key word. It is used to create

an object in memory. The type of object that

will be created is listed after the new key

word.

Table of contents

Reading Keyboard Input
The Scanner class

First, you create a Scanner object and

connect it to the System.in object:

Scanner keyboard = new Scanner(System.in);

This specifies that a Scanner object should

be created, and it should be connected to the

System.in object as source for input.

The memory address of this object is

assigned to the variable keyboard.

After this statement executes, the keyboard

variable will reference the Scanner object in

memory.
Table of contents

Reading Keyboard Input
Scanner class methods

The Scanner class has methods for reading

strings, bytes, integers, long integers, short

integers, floats and doubles.

Table of contents

Reading Keyboard Input
Scanner class methods : nextByte

Returns input as a byte

1 byte x;

2 Scanner keyboard = new Scanner(System.in);

3 System.out.println(“Enter a byte value: “);

4 x = keyboard.nextByte();

The nextByte method formats the input that was entered at

the keyboard as a byte, and then returns it.

Table of contents

Reading Keyboard Input
Scanner class methods : nextDouble

Returns input as a double

1 double number;

2 Scanner keyboard = new Scanner(System.in);

3 System.out.println(“Enter a double value: “);

4 number = keyboard.nextDouble();

The nextDouble method formats the input that was entered

at the keyboard as a double, and then returns it.

Table of contents

Reading Keyboard Input
Scanner class methods : nextFloat

Returns input as a float

1 float number;

2 Scanner keyboard = new Scanner(System.in);

3 System.out.println(“Enter a float value: “);

4 number = keyboard.nextFloat();

The nextFloat method formats the input that was entered at

the keyboard as a float, and then returns it.

Table of contents

Reading Keyboard Input
Scanner class methods : nextInt

Returns input as an int

1 int number;

2 Scanner keyboard = new Scanner(System.in);

3 System.out.println(“Enter a integer value: “);

4 number = keyboard.nextInt();

The nextInt method formats the input that was entered at

the keyboard as an int, and then returns it.

Table of contents

Reading Keyboard Input
Scanner class methods : nextLine

Returns input as a String

1 String name;

2 Scanner keyboard = new Scanner(System.in);

3 System.out.println(“Enter your name: “);

4 name = keyboard.nextLine();

The nextLine method formats the input that was entered at

the keyboard as a String, and then returns it.

Table of contents

Reading Keyboard Input
Scanner class methods : nextLong

Returns input as a long

1 long number;

2 Scanner keyboard = new Scanner(System.in);

3 System.out.println(“Enter a long value: “);

4 number = keyboard.nextLong();

The nextLong method formats the input that was entered at

the keyboard as a long, and then returns it.

Table of contents

Reading Keyboard Input
Scanner class methods : nextShort

Returns input as a short

1 short number;

2 Scanner keyboard = new Scanner(System.in);

3 System.out.println(“Enter a short value: “);

4 number = keyboard.nextShort();

The nextShort method formats the input that was entered

at the keyboard as a short, and then returns it.

Table of contents

Reading Keyboard Input
Scanner class : import statement

The Scanner class is not automatically available to your Java

programs. Any program that uses the Scanner class should

have the following statement near the beginning of the file,

before any class definition:

import java.util.Scanner;

This statement tells the Java compiler where in the Java

library to find the Scanner class, and makes it available to

your program.

Table of contents

Reading Keyboard Input
1 import java.util.Scanner; // Needed for the Scanner class

2

3 public class InputProblem

4 {

5 public static void main(String[] args)

6 {

7 String name;

8 int age;

9 double income;

10

11 Scanner keyboard = new Scanner(System.in);

12

13 System.out.print(“What is your age? “);

14 age = keyboard.nextInt();

15

16 System.out.print(“What is your annual income? “);

17 income = keyboard.nextDouble();

18

19 System.out.print(“What is your name? “);

20 name = keyboard.nextLine();

21

22 System.out.println(“Hello “ + name + “. Your age is “ +

23 age + “ and your income is R” + income);

24 }

25 }

Variable declarations

Create Scanner

object to read input

Get user’s age

Get user’s

income

Get user’s name

Display information back to the user

Table of contents

Reading Keyboard Input
1 import java.util.Scanner; // Needed for the Scanner class

2

3 public class InputProblem

4 {

5 public static void main(String[] args)

6 {

7 String name;

8 int age;

9 double income;

10

11 Scanner keyboard = new Scanner(System.in);

12

13 System.out.print(“What is your age? “);

14 age = keyboard.nextInt();

15

16 System.out.print(“What is your annual income? “);

17 income = keyboard.nextDouble();

18

19 System.out.print(“What is your name? “);

20 name = keyboard.nextLine();

21

22 System.out.println(“Hello “ + name + “. Your age is “ +

23 age + “ and your income is R” + income);

24 }

25 }

What is your age? 25 [enter]

Printed on the computer screen when application runs:

What is your annual income? 80000 [enter]

What is your name? Hello . Your age is 25 and your income is R80000.00

The program does not give

the user time to enter

his/her name

Problem!!

Table of contents

Reading Keyboard Input

When the user types keystrokes at the keyboard,

those keystrokes are stored in an area of memory

called the keyboard buffer.

Pressing the “Enter” key causes a new-line

character to be stored in the keyboard buffer.

Table of contents

Reading Keyboard Input

13 System.out.print(“What is your age? “);

14 age = keyboard.nextInt();

15

16 System.out.print(“What is your annual income? “);

17 income = keyboard.nextDouble();

18

19 System.out.print(“What is your name? “);

20 name = keyboard.nextLine();

keyboard buffer

The user was asked to enter his/her age.

The statement in line 14 called the nextInt() method to

read an integer from the keyboard buffer.

The user typed 25 and then pressed the “Enter” key

The nextInt() method read the value 25 from the

keyboard buffer, and then stopped when it encountered

the newline character. The newline character was not

read and remained in the keyboard buffer.

/n

nextInt() method

age =

25

Stops when it sees the new-line character

Table of contents

Reading Keyboard Input

16 System.out.print(“What is your annual income? “);

17 income = keyboard.nextDouble();

18

19 System.out.print(“What is your name? “);

20 name = keyboard.nextLine();

keyboard buffer

Next the user was asked to enter his/her annual income

The user typed 80000 and pressed the “Enter” key

When the nextDouble() method in line 17 executed, it

first encountered the new-line character that was left

behind. This does not cause a problem because the

nextDouble() method is designed to skip any leading

newline characters it encounters. It skips the newline

character, reads the value 80000.00 and stops reading

when it encounters the newline character which is then

left in the keyboard buffer.

/n

/n

nextDouble() method

income =

Stops when it sees the newline character

Skips newline character

80000

Table of contents

Reading Keyboard Input

19 System.out.print(“What is your name? “);

20 name = keyboard.nextLine();

keyboard buffer

Next the user was asked to enter his/her name

In line 20 the nextLine() method is called.

/n

The nextLine() method, however, is not designed to skip

over an initial newline character. If a newline character is

the first character that nextLine() method encounters,

then nothing will be read. It will immediately terminate

and the user will not be given a chance to enter his or

her name.

Table of contents

Reading Keyboard Input
1 import java.util.Scanner; // Needed for the Scanner class

2

3 public class InputProblem

4 {

5 public static void main(String[] args)

6 {

7 String name;

8 int age;

9 double income;

10

11 Scanner keyboard = new Scanner(System.in);

12

13 System.out.print(“What is your age? “);

14 age = keyboard.nextInt();

15

16 System.out.print(“What is your annual income? “);

17 income = keyboard.nextDouble();

18 keyboard.nextLine();

19 System.out.print(“What is your name? “);

20 name = keyboard.nextLine();

21

22 System.out.println(“Hello “ + name + “. Your age is “ +

23 age + “ and your income is R” + income);

24 }

25 }

The purpose of this call is to consume, or

remove, the newline character that remains in

the keyboard buffer. We do not need to keep

the method’s return value so we do not assign

the method’s return value to any variable

Table of contents

Dialog Boxes
The JOptionPane Class

The JOptionPane class provides methods to

display each type of dialog box.

Table of contents

Dialog Boxes
The JOptionPane Class

A dialog box that displays a

message and an OK button

A dialog box that prompts the user for

input and provides a text field where

input is typed. An OK and Cancel

button are displayed.

Table of contents

Dialog Boxes
The JOptionPane Class

The JOptionPane class is not automatically

available to your Java programs. The class must

be imported:

import javax.swing.JOptionPane;

This statement tells the compiler where to find

the JOptionPane class and makes it available to

your program.

Table of contents

Dialog Boxes
Displaying Message Dialog Boxes

The showMessageDialog method is used to

display a message dialog.

JOptionPane.showMessageDialog(null, “Today is a great day”);

This argument is only important in programs

that displays other graphical windows. You will

use null as first argument. This causes the dialog

box to be displayed in the center of the screen.

Table of contents

Dialog Boxes
Displaying Message Dialog Boxes

The showMessageDialog method is used to

display a message dialog.

JOptionPane.showMessageDialog(null, “Today is a great day”);

This argument is the message we wish to display

in the dialog box.

Table of contents

Dialog Boxes
Displaying Message Dialog Boxes

The showMessageDialog method is used to

display a message dialog.

JOptionPane.showMessageDialog(null, “Today is a great day”);

When the user

clicks on the OK

button, the dialog

box will close.

Table of contents

Dialog Boxes
Displaying Input Dialog Boxes

The showInputDialog method is used to display

an input dialog.

String name;

name = JOptionPane.showInputDialog(“Enter your name: “);

This argument is the message we wish to display

in the dialog box.

Table of contents

Dialog Boxes
Displaying Input Dialog Boxes

The showInputDialog method is used to display

an input dialog.

String name;

name = JOptionPane.showInputDialog(“Enter your name: “);

When the user clicks

on the OK button,

variable name will

reference the string

value entered by the

user into the text

field.
Table of contents

Dialog Boxes
Displaying Input Dialog Boxes

The showInputDialog method is used to display

an input dialog.

String name;

name = JOptionPane.showInputDialog(“Enter your name: “);

If the user clicks the

Cancel button,

variable name will

reference the special

value null.

Table of contents

1 import javax.swing.JOptionPane;

2

3 public class NamesDialog

4 {

5 public static void main(String[] args)

6 {

7 String firstName, middleName, lastName;

8

9 firstName = JOptionPane.showInputDialog(“What is your first name?”);

10

11 middleName = JOptionPane.showInputDialog(“What is your middle ” +

“name”);

12

13 lastName = JOptionPane.showInputDialog(“What is your last name?”);

14

15 JOptionPane.showMessageDialog(null, “Hello “ + firstName + “ “ +

16 middleName + “ “ + lastName);

17 System.exit(0);

18 }

19 }

Dialog Boxes

import the JOptionPane for

use in the program

String declarations

Table of contents

1 import javax.swing.JOptionPane;

2

3 public class NamesDialog

4 {

5 public static void main(String[] args)

6 {

7 String firstName, middleName, lastName;

8

9 firstName = JOptionPane.showInputDialog(“What is your first name?”);

10

11 middleName = JOptionPane.showInputDialog(“What is your middle ” +

“name”);

12

13 lastName = JOptionPane.showInputDialog(“What is your last name?”);

14

15 JOptionPane.showMessageDialog(null, “Hello “ + firstName + “ “ +

16 middleName + “ “ + lastName);

17 System.exit(0);

18 }

19 }

Dialog Boxes

Opens the input dialog box

and asks the question: “What

is your first name?” The

user then enters his/her first

name and clicks on OK.

Table of contents

1 import javax.swing.JOptionPane;

2

3 public class NamesDialog

4 {

5 public static void main(String[] args)

6 {

7 String firstName, middleName, lastName;

8

9 firstName = JOptionPane.showInputDialog(“What is your first name?”);

10

11 middleName = JOptionPane.showInputDialog(“What is your middle ” +

“name”);

12

13 lastName = JOptionPane.showInputDialog(“What is your last name?”);

14

15 JOptionPane.showMessageDialog(null, “Hello “ + firstName + “ “ +

16 middleName + “ “ + lastName);

17 System.exit(0);

18 }

19 }

Dialog Boxes

Opens the input dialog box

and asks the question: “What

is your middle name?” The

user the enters his/her

middle name and clicks on

OK.

Table of contents

1 import javax.swing.JOptionPane;

2

3 public class NamesDialog

4 {

5 public static void main(String[] args)

6 {

7 String firstName, middleName, lastName;

8

9 firstName = JOptionPane.showInputDialog(“What is your first name?”);

10

11 middleName = JOptionPane.showInputDialog(“What is your middle ” +

“name”);

12

13 lastName = JOptionPane.showInputDialog(“What is your last name?”);

14

15 JOptionPane.showMessageDialog(null, “Hello “ + firstName + “ “ +

16 middleName + “ “ + lastName);

17 System.exit(0);

18 }

19 }

Dialog Boxes

Opens the input dialog box

and asks the question: “What

is your last name?” The

user the enters his/her last

name and clicks on OK.

Table of contents

1 import javax.swing.JOptionPane;

2

3 public class NamesDialog

4 {

5 public static void main(String[] args)

6 {

7 String firstName, middleName, lastName;

8

9 firstName = JOptionPane.showInputDialog(“What is your first name?”);

10

11 middleName = JOptionPane.showInputDialog(“What is your middle ” +

“name”);

12

13 lastName = JOptionPane.showInputDialog(“What is your last name?”);

14

15 JOptionPane.showMessageDialog(null, “Hello “ + firstName + “ “ +

16 middleName + “ “ + lastName);

17 System.exit(0);

18 }

19 }

Dialog Boxes

Opens the message dialog

box and displays the first

name, middle name and

last name the user typed in

the input dialog boxes. The

user clicks on the OK

button and the program

exits.

Table of contents

1 import javax.swing.JOptionPane;

2

3 public class NamesDialog

4 {

5 public static void main(String[] args)

6 {

7 String firstName, middleName, lastName;

8

9 firstName = JOptionPane.showInputDialog(“What is your first name?”);

10

11 middleName = JOptionPane.showInputDialog(“What is your middle ” +

“name”);

12

13 lastName = JOptionPane.showInputDialog(“What is your last name?”);

14

15 JOptionPane.showMessageDialog(null, “Hello “ + firstName + “ “ +

16 middleName + “ “ + lastName);

17 System.exit(0);

18 }

19 }

Dialog Boxes

This statement causes the

program to end, and is

required if you use the

JOptionPane class to

display dialog boxes.

Table of contents

Converting String Input to Numbers

The JOptionPane class does not have different

methods for reading values of different data

types as input. The showInputDialog method

always returns the user’s input as a String, even if

the user enters numeric data.

Table of contents

Converting String Input to Numbers
The Byte.parseByte method

This method converts a string to a byte.

byte number;

String input;

input = JOptionPane.showInputDialog(“Enter a number:”);

number = Byte.parseByte(input);

The string value in variable input is converted

to a byte and then stored in variable number.

Table of contents

Converting String Input to Numbers
The Double.parseDouble method

This method converts a string to a double.

double number;

String input;

input = JOptionPane.showInputDialog(“Enter a price:”);

number = Double.parseDouble(input);

The string value in variable input is converted

to a double and then stored in variable number.

Table of contents

Converting String Input to Numbers
The Float.parseFloat method

This method converts a string to a float.

float number;

String input;

input = JOptionPane.showInputDialog(“Enter a price:”);

number = Float.parseFloat(input);

The string value in variable input is converted

to a float and then stored in variable number.

Table of contents

Converting String Input to Numbers
The Integer.parseInt method

This method converts a string to an int.

int number;

String input;

input = JOptionPane.showInputDialog(“Enter a number:”);

number = Int.parseInt(input);

The string value in variable input is converted

to an int and then stored in variable number.

Table of contents

Table of contents

Converting String Input to Numbers
The Long.parseLong method

This method converts a string to a long.

int number;

String input;

input = JOptionPane.showInputDialog(“Enter a number:”);

number = Long.parseLong(input);

The string value in variable input is converted

to a long and then stored in variable number.

Table of contents

Converting String Input to Numbers
The Short.parseShort method

This method converts a string to a short.

int number;

String input;

input = JOptionPane.showInputDialog(“Enter a number:”);

number = Short.parseShort(input);

The string value in variable input is converted

to a short and then stored in variable number.

Table of contents

1 import javax.swing.JOptionPane;

2

3 public class DialogExample

4 {

5 public static void main(String[] args)

6 {

7 String input, name;

8 int hours;

9 double payRate, grossPay;

10

11 name = JOptionPane.showInputDialog(“What is your name?”);

12

13 input = JOptionPane.showInputDialog(“How many hours did you work?”);

14 hours = Integer.parseInt(input);

15

16 input = JOptionPane.showInputDialog(“What is your hourly pay rate?”);

17 payRate = Double.parseDouble(input);

18

19 grossPay = hours * payRate;

20

21 JOptionPane.showMessageDialog(null, “Hello “ + name +

22 “! Your gross pay is: R” + grossPay);

23 System.exit(0);

24 }

25 } Table of contents

1 import javax.swing.JOptionPane;

2

3 public class DialogExample

4 {

5 public static void main(String[] args)

6 {

7 String input, name;

8 int hours;

9 double payRate, grossPay;

10

11 name = JOptionPane.showInputDialog(“What is your name?”);

12

13 input = JOptionPane.showInputDialog(“How many hours did you work?”);

14 hours = Integer.parseInt(input);

15

16 input = JOptionPane.showInputDialog(“What is your hourly pay rate?”);

17 payRate = Double.parseDouble(input);

18

19 grossPay = hours * payRate;

20

21 JOptionPane.showMessageDialog(null, “Hello “ + name +

22 “! Your gross pay is: R” + grossPay);

23 System.exit(0);

24 }

25 }

import JOptionPane to be

used in program

variable declarations

Table of contents

1 import javax.swing.JOptionPane;

2

3 public class DialogExample

4 {

5 public static void main(String[] args)

6 {

7 String input, name;

8 int hours;

9 double payRate, grossPay;

10

11 name = JOptionPane.showInputDialog(“What is your name?”);

12

13 input = JOptionPane.showInputDialog(“How many hours did you work?”);

14 hours = Integer.parseInt(input);

15

16 input = JOptionPane.showInputDialog(“What is your hourly pay rate?”);

17 payRate = Double.parseDouble(input);

18

19 grossPay = hours * payRate;

20

21 JOptionPane.showMessageDialog(null, “Hello “ + name +

22 “! Your gross pay is: R” + grossPay);

23 System.exit(0);

24 }

25 }

Input dialog box.

Input saved as normal

string value.

Table of contents

1 import javax.swing.JOptionPane;

2

3 public class DialogExample

4 {

5 public static void main(String[] args)

6 {

7 String input, name;

8 int hours;

9 double payRate, grossPay;

10

11 name = JOptionPane.showInputDialog(“What is your name?”);

12

13 input = JOptionPane.showInputDialog(“How many hours did you work?”);

14 hours = Integer.parseInt(input);

15

16 input = JOptionPane.showInputDialog(“What is your hourly pay rate?”);

17 payRate = Double.parseDouble(input);

18

19 grossPay = hours * payRate;

20

21 JOptionPane.showMessageDialog(null, “Hello “ + name +

22 “! Your gross pay is: R” + grossPay);

23 System.exit(0);

24 }

25 }

Input dialog box.

Input saved as string

and converted to int.

Table of contents

1 import javax.swing.JOptionPane;

2

3 public class DialogExample

4 {

5 public static void main(String[] args)

6 {

7 String input, name;

8 int hours;

9 double payRate, grossPay;

10

11 name = JOptionPane.showInputDialog(“What is your name?”);

12

13 input = JOptionPane.showInputDialog(“How many hours did you work?”);

14 hours = Integer.parseInt(input);

15

16 input = JOptionPane.showInputDialog(“What is your hourly pay rate?”);

17 payRate = Double.parseDouble(input);

18

19 grossPay = hours * payRate;

20

21 JOptionPane.showMessageDialog(null, “Hello “ + name +

22 “! Your gross pay is: R” + grossPay);

23 System.exit(0);

24 }

25 }

Input dialog box.

Input saved as string

and converted to

double.

Table of contents

1 import javax.swing.JOptionPane;

2

3 public class DialogExample

4 {

5 public static void main(String[] args)

6 {

7 String input, name;

8 int hours;

9 double payRate, grossPay;

10

11 name = JOptionPane.showInputDialog(“What is your name?”);

12

13 input = JOptionPane.showInputDialog(“How many hours did you work?”);

14 hours = Integer.parseInt(input);

15

16 input = JOptionPane.showInputDialog(“What is your hourly pay rate?”);

17 payRate = Double.parseDouble(input);

18

19 grossPay = hours * payRate;

20

21 JOptionPane.showMessageDialog(null, “Hello “ + name +

22 “! Your gross pay is: R” + grossPay);

23 System.exit(0);

24 }

25 }

Calculates the user’s

gross pay by

multiplying hours with

payRate.

Table of contents

1 import javax.swing.JOptionPane;

2

3 public class DialogExample

4 {

5 public static void main(String[] args)

6 {

7 String input, name;

8 int hours;

9 double payRate, grossPay;

10

11 name = JOptionPane.showInputDialog(“What is your name?”);

12

13 input = JOptionPane.showInputDialog(“How many hours did you work?”);

14 hours = Integer.parseInt(input);

15

16 input = JOptionPane.showInputDialog(“What is your hourly pay rate?”);

17 payRate = Double.parseDouble(input);

18

19 grossPay = hours * payRate;

20

21 JOptionPane.showMessageDialog(null, “Hello “ + name +

22 “! Your gross pay is: R” + grossPay);

23 System.exit(0);

24 }

25 }

Message dialog box

displays the gross pay

of the user.

Table of contents

1 import javax.swing.JOptionPane;

2

3 public class DialogExample

4 {

5 public static void main(String[] args)

6 {

7 String input, name;

8 int hours;

9 double payRate, grossPay;

10

11 name = JOptionPane.showInputDialog(“What is your name?”);

12

13 input = JOptionPane.showInputDialog(“How many hours did you work?”);

14 hours = Integer.parseInt(input);

15

16 input = JOptionPane.showInputDialog(“What is your hourly pay rate?”);

17 payRate = Double.parseDouble(input);

18

19 grossPay = hours * payRate;

20

21 JOptionPane.showMessageDialog(null, “Hello “ + name +

22 “! Your gross pay is: R” + grossPay);

23 System.exit(0);

24 }

25 }

This statement causes the

program to end, and is

required if you use the

JOptionPane class to

display dialog boxes.

Table of contents

Please read pages 123

and 124 on common

errors to avoid when

programming in Java.

Table of contents

